
MI RF Cavity Tuning Control System Characterization 
3/1/2007 

T.Berenc, S.Kotz 
 
 
Introduction:  The Main Injector cavity tuning control system has been characterized to guide 
future upgrade designs.  The relationship between the ferrite tuner biasing current and the cavity 
resonant frequency has been measured as well as the dynamic response due to Eddy current 
effects in the tuners.  The complete system response has been modeled to first order and included 
in a time-varying state space simulation and compared to test station measurements. 
 

Principle of Present Cavity Tuning Control Scheme 
The present cavity tuning control 
scheme is based upon the simple fact 
that in a parallel RLC circuit the 
phase angle between the generator 
current and the circuit voltage is zero 
when the circuit resonance is tuned 
to the drive frequency.  Figure 1 
shows a simplified block diagram of 
a typical MI cavity tuning control 
system for a ferrite tuned cavity 
driven by both an RF power tube and 
a beam image current.  The power 
tube is cathode driven with the tube 
anode current, GI , being directly 
proportional to the cathode voltage 
to first order.  Thus, by detecting the 
phase between the tube anode 
voltage and the cathode voltage, one 
can effectively measure the load angle presented to the power tube.  By controlling the DC 
biasing field in the ferrite tuners, the effective inductance of the cavity impedance is changed; 
thus controlling the cavity resonant frequency. 
 
This discussion uses the terminology conventions of Ref. [1] and [2] in which the circuit phasor 
diagram is referenced to the cavity (anode) voltage lying on the horizontal axis and the generator 
load angle, Lφ , is defined as the phase of the generator current relative to the cavity voltage.   
It is a simple detail but careful attention has to be made with regards to the definition of the 
relative phase angles. 
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        Figure 1:  Typical cavity tuning control scheme block diagram.



The equations from [1] and [2] relevant to this discussion are summarized here for convenience: 
 
The cavity impedance is expressed as: 
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where: 
f : is the drive frequency of the generator current 

of : is the cavity resonant frequency 
R : is the shunt impedance (including the tube output impedance for this discussion) 
Q : is the quality factor RCfQ oπ2= (loaded Q for this discussion) 

Zφ : is the impedance phase angle 
 

 
From the circuit phasor diagram [2], the cavity (anode) voltage phasor AV̂  is expressed as: 

 

ZIV TA ⋅= ˆˆ    (4)     where Zj

Z

o
BGT e

I
III φ

φ
−=+=

cos
ˆˆˆ     (5) 

where: 
Lj

GG eII φ=ˆ : is the generator (tube) current phasor 

⎥⎦
⎤

⎢⎣
⎡ ++−

=
Sj

BB eII
φ

π
2

)/(ˆ : is the beam image current phasor (transformed to the anode) with 
the -/(+) sign used for below/(above) transition 

R
V

I A
o ≡ :  is the current necessary to generate AV  with no detuning ( 0=Zφ ). 

 
 
The generator current magnitude, GI , and load angle, Lφ , are expressed via: 
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where:  

Sφ : is the beam synchronous phase angle 
+/(-):    indicates below/(above) transition in (7) 
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IY ≡ :  is the beam loading factor 

 



An important feature of Eq.(6) is revealed for steady-state conditions: that the generator current 
is minimized if 0=Lφ  (the tube sees a real impedance).  The emphasis is on steady-state since 
the peak generator power can be reduced in transient conditions (beam gaps) if half-detuning is 
used [3]. 
 
The present MI cavity tuning control system classically regulates the load angle Lφ  to zero.  Not 
only does this minimize the generator current in steady-state conditions, but it also fortunately 
satisfies the low intensity Robinson stability criterion [4] ( ffo >  below transition and ffo <  
above transition).  This is seen by setting 0=Lφ  in Eq. (7) resulting in SZ Y φφ cos)/(tan −+= .  
Even in the presence of beam gaps, the control scheme tends towards this condition since it is 
really an averaged value of Lφ  that the controller works on.  This was shown in [5] during which 
the detuning was shown to go through the half-detuning condition during the multi-batch loading 
of the MI. 
 
In the absence of beam loading, 0=Y , Eq. (7) shows that ZL φφ −= ; thus allowing for a direct 
measurement of the cavity detuning angle, Zφ , from the Lφ  phase detector.  If beam gaps are 
long enough, the natural transients of the system will have decayed between beam pulses to 
allow a direct measurement of the detuning angle.  Unfortunately, the longest beam gap in the 
multi-batch slip-stacking scheme proposed for the Proton Plan is only 1/14 of the MI ring when 
the machine is fully loaded; only ~0.8usec.  The lowest effective quality factor of a MI cavity 
impedance with 15dB of direct RF feedback is ~ 3000/(1+6) or ~ 430.  This corresponds to a 
voltage decay time of ωτ /2 effE Q=  = ~2.6 usec.  Thus the ~0.8usec gap is not sufficiently long 
enough to allow for the cavity detuning angle to be directly measured during the beam gaps. 
 

Cavity Detuning Measurement Tool 
A simple cavity detuning measurement tool was developed during the Proton Plan power 
measurement studies as briefly mentioned in Ref.[5].  Further details are documented here: 
 
As discussed above, in the absence of beam loading, ZL φφ −= .  If the cavity tuning control 
system has been calibrated such that 0=−= ZL φφ  without beam loading, then the relationship 
between the cavity resonant frequency and the Ferrite Bias Supply (FBS) current, FBSI , can be 
measured during no beam conditions.  Under these conditions, it can be assumed that the cavity 
resonant frequency, of ,  is equal to the low-level RF (LLRF) drive frequency, f .  FBSI  and f  
can be monitored via ACNET parameters I:FBxxI and I:VFOUT respectively; where xx is the 
MI RF station number 01 to 18 of interest.  Thus a cavity tuning measurement tool does the 
following: 
 

(1) During a no-beam cycle two time functions are measured via ACNET: )(tI FBS  and )(tf . 
(2) The tool interpolates each function to a common time base, Ct , since ACNET parameters 

do not necessarily share a common time stamp and forms a sampled dataset of 
( ))(),( CFBSC tItf  values. 



(3) A function )( FBSo If  fitting this dataset is found.  A 3rd order polynomial fit is used in 
W20.  An exponential function shows more promise for extrapolation purposes.  The 
details of the functional fit are discussed in a separate section below. 

(4) )(tf beam  and )(tI beam
FBS  are then measured as the RF drive frequency and the FBS current 

during beam conditions.  (again a common time base is used) 
(5) Using )( FBSo If , the cavity resonant frequency with beam is calculated as 

( ))()( tIftf beam
FBSoo =  

(6) The detuning angle, )(tZφ , is calculated using Eq. (2) with Q approximated via the linear 
function ( ) 2.357980)(27.6835)( −⋅= tftfQ oo  where it is assumed that the cavity Q is 
3000 at injection frequency (52.8114 MHz) and 5000 at extraction (53.104 MHz). 

 
An example detuning measurement from [5] is shown in Fig. 2 and 3 for a ‘non slip-stacking’ 
station (a station that is held ‘off’ during the slip-stacking process) during a typical MI mixed-
mode cycle (2 batches slip-stacked for pBar production plus 5 batches for NuMI). 

 
 
 
 

There are a few noteworthy comments for Figs. 2 and 3. 
 

• The change from ffo >  below transition to ffo <  above transition is seen to happen 
automatically as expected with the cavity tuning control feedback 

• The initial ffo <  at the beginning of the cycle can be either (1) an error in the )( FBSIf  
function, or (2) real due to the station ‘holding’ a slightly erroneous FBSI  value before 
beam is injected 

• The incremental increase in the detuning as the 5 NuMI batches are injected is as 
expected due to the incremental increase in the average beam loading. 

Figure 3: Example f∆  and Zφ  calculations for Fig. 2. Figure 2: Example measurement results of of and f during 
a typical MI mixed-mode cycle (2 batches being slip-stacked 
for pBar production + 5 batches for NuMI). 
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Transfer Function Analysis Block Diagram 
A transfer function block diagram of the cavity tuning control system is shown in Fig.4.  It is the 
intent of this note to document the details of the various elements of this transfer function model 
to further the understanding of the present loop, to guide future upgrades, and to provide a 
mathematical model that can be included in RF system simulations and analysis. 
 

 
Figure 4:  Simplified transfer function block diagram of the cavity tuning control system 

 
The components of Fig.4 are: 
 

• )( FBSo If  is not a transfer function, but rather describes the functional relationship 
between the cavity resonant frequency and the ferrite tuner biasing current as discussed 
above. 

• Gtuner(s) is the transfer function describing the response of the cavity resonant frequency 
to changes in the ferrite tuner biasing due to Eddy current effects. 

• Gxp(s) is the transfer function relating modulations of the cavity resonant frequency to 
modulations of the cavity voltage phase, Cavφ . 

• Dcntrl(s) is the transfer function for the cavity tuning controller feedback control function. 
• Gpp(s) is the transfer function relating modulations of the generator current phase, Gφ , to 

modulations of Cavφ . 
 
Gpp(s) is not needed to characterize the closed loop response of the cavity tuning control loop.  
However, it is included in the diagram above to show where the tuning loop would fit into a 
larger system diagram.  The dynamic measurements shown here effectively used a constant Gφ  
such that Gpp(s) did not affect the measurements (i.e. upstream phase loops were opened) 
 
The sections to follow describe the components of this model in detail: 
 
 

 



fo(IFBS) Curve Fitting: 
Two possible curve fitting functions have been found for )( FBSo If : 
 

• A 3rd order polynomial of the form:  3
3

2
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• An exponential function of the form:  ( )( ) 30
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where ic  and ik  are coefficients.  The 3rd order polynomial function fits the original data with 
less error than the exponential function; however, it does not lend itself well to extrapolation 
since it is not monotonically increasing in domains used for extrapolation.  The exponential 
function is monotonically increasing; thus preventing multiple closed loop stable points that 
could present errors in simulations. 
 
An example curve fit for the MI-60 test station cavity S/N 17 is shown in Figs. 5 and 6. 
 

 
 
 
 

The inverse function )( oFBS fI  can find the required FBSI  for a desired of ; which would be 
useful for a ‘smart’ cavity tuning controller.  Again, two possible curve fitting functions are: 
 

• A 3rd order polynomial of the form:  3
3

2
210)( FBSFBSFBSoFBS ICICICCfI +++≅  

• A logarithmic function of the form:  ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −
−−≅

0

3

1
2 1ln1)(

k
kf

k
kfI o

oFBS  

 
where iC  are coefficients that have to be found via a separate regression method than that for ic  
and ik  are the same coefficients for the exponential )( FBSo If  fit above. 

50 100 150 200 250 300 350
52.8

52.864

52.928

52.992

53.056

53.12

Original Data
3rd Order Polynomial Fit
Exponential Fit

Cavity Res. Freq. vs. Bias Supply I

Bias Supply Current (Amps)

fo
 (M

H
z)

50 100 150 200 250 300 350
0.01

0.0075

0.005

0.0025

0

0.0025

0.005

0.0075

0.01

3rd Order Polynomial Fit
Exponential Fit

Percent Error of fo(I_FBS)

Bias Supply Current (Amps)

Pe
rc

en
t E

rr
or

 in
 fo

 (%
)

Figure 6: Percent error in )( FBSo If  for Fig. 4.  
Note: 0.0075% corresponds to ~4 kHz. 

Figure 5: Example )( FBSo If  curve fits for MI-60 test 
station cavity S/N 17. 



Example fits for )( oFBS fI  for the MI-60 test station cavity S/N 17 are shown in Figs. 7 and 8. 

 
 
 
 
 

 
 
The curve fitting coefficients for all MI stations are given in Table I on the following page: 
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Figure 8: Percent error in )( oFBS fI  for Fig. 4. Figure 7: Example )( oFBS fI  curve fits for MI-60 
test station cavity S/N 17. 



Table 1: )( FBSo If  and )( oFBS fI  Curve Fit Coefficients 

Station c0 c1 [10-3] c2 [10-6] c3 [10-10] k0 k1 [10-3] k2 k3 C0 [109] C1 [107] C2 [106] C3 [104]
1 52.733 1.379 -1.063 -2.713 2.836 3.240 -524.766 50.401 -1.691 9.589 -1.813 1.143
2 52.738 1.349 -0.947 -4.331 2.846 3.163 -538.624 50.398 -1.612 9.142 -1.729 1.089
3 52.733 1.367 -1.463 4.712 2.803 3.184 -551.418 50.406 -1.962 11.130 -2.105 1.327
4 52.718 1.428 -0.605 -12.750 2.877 3.189 -503.488 50.399 -1.229 6.972 -1.318 0.831
5 52.729 1.284 -0.550 -9.037 2.856 2.982 -551.906 50.407 -1.532 8.688 -1.643 1.035
6 52.684 1.362 -1.359 4.716 2.782 2.854 -573.912 50.432 -1.903 10.795 -2.042 1.287
7 52.693 1.430 -1.581 6.360 2.786 3.067 -546.048 50.419 -1.838 10.431 -1.973 1.244
8 52.713 1.361 -1.328 3.431 2.798 3.051 -554.847 50.418 -1.895 10.753 -2.034 1.282
9 52.727 1.391 -0.985 -4.123 2.849 3.113 -533.287 50.406 -1.400 7.940 -1.502 0.946
10 52.703 1.324 -1.348 4.776 2.771 2.882 -583.555 50.439 -1.942 11.016 -2.084 1.314
11 52.708 1.269 -1.344 5.318 2.742 2.905 -595.382 50.444 -2.671 15.156 -2.866 1.807
12 52.726 1.228 -0.884 -1.045 2.797 2.867 -587.476 50.434 -1.932 10.961 -2.073 1.306
13 52.722 1.439 -1.500 3.822 2.802 3.306 -519.353 50.412 -1.809 10.264 -1.941 1.224
14 52.705 1.139 -1.002 3.016 2.741 2.542 -663.056 50.461 -2.545 14.440 -2.731 1.722
15 52.695 1.189 -1.130 3.978 2.731 2.643 -637.711 50.460 -2.793 15.845 -2.997 1.889
16 52.704 1.380 -1.075 -0.645 2.822 2.953 -546.455 50.428 -1.428 8.101 -1.532 0.966
17 52.669 1.391 -1.585 7.195 2.729 2.895 -574.345 50.451 -2.569 14.579 -2.758 1.739
18 52.687 1.317 -1.262 4.030 2.766 2.810 -583.622 50.445 -2.023 11.479 -2.171 1.369

Test Sta 52.727 1.306 0.491 -31.28 2.959 2.606 -564.011 50.429 -0.790 4.479 -0.850 0.534

fo(IFBS) - Polynomial Fit Coefficients fo(IFBS), IFBS(fo) - Exp, Log Fit Coefficients IFBS(fo) - Polynomial Fit Coefficients

 
Note:  

(1) The test station requires less FBSI  near extraction frequencies than the operational stations.  This could possibly be due to 
temperature differences.  The operational stations are run with a higher duty cycle than the test station was run at during the 
measurements. 

(2) A simple temperature effect measurement was made on Station 1 on a day when the MI RF was shut off for a few hours and then 
turned back on.  Within fifteen minutes of turning on, the temperature rise of the cavities had changed )( FBSo If  by as much as -12 
kHz (the full 3dB bandwidth for a Q of 5000 @53.104 MHz is ~11 kHz) near extraction for the same FBSI ; implying that the 
cavity resonant frequency increased due to thermal expansion and required a higher FBSI  to achieve the  ~53.104 MHz extraction 
frequency.



Dynamic Response of the Cavity Ferrite Tuners: Gtuner(s) 
The cavity ferrite tuners are ferrite loaded coaxial inductive stubs that provide the effective 
variable inductance in the cavity circuit of Fig.1.  The permeability of the ferrite material is 
adjusted via a biasing magnetic field which is generated via current loops that wrap around the 
inner and outer conductors of the coaxial stub.  Eddy currents generated in the inner and outer 
conductors oppose changes in the biasing magnetic field; giving rise to a dynamic response to a 
change in the cavity resonant frequency. 
 
A simple first order model of this dynamic response is represented by Fig.9a.  The Ferrite Bias 
Supply is represented as an ideal current source FBSI .  The magnetic flux coupling between the 
magnetic bias windings and the eddy currents is represented as a transformer with coils of 
inductance tunerL  and EddyL  with mutual inductance Eddytuner LLM = .  tunerR  and EddyR represent 
the resistive losses associated with the tuner windings and eddy currents respectively.  The 
biasing magnetic flux, Φ , is assumed to be proportional to the difference of the currents FBSI  
and EddyI  in tunerL  and EddyL  respectively ( EddyFBS II −∝Φ ).  Assuming the transformer is linear, 
the circuit of Fig.9a can be converted to that of Fig.9b.  Additionally, for simplicity, if it is 
assumed that Eddytuner LL =  the circuit of Fig.9b further reduces to that of Fig. 9c.  It is now clear 
that when FBSI  initially steps on, EddyI  will equal FBSI , thus making the initial biasing flux equal 

to zero.  Using the LaPlace variable ωjs = , ( ) FBS
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can also be used to model the dynamic behavior of f∆  (Eq.3) to a change in the FBS current if it 
is assumed that the cavity resonant frequency is proportional to the tuner’s biasing flux. 
 
 

 
Fig. 9a 

 

 
    Fig. 9b     Fig. 9c 



The value of this single pole was measured at the MI-60 test station.  A step change in the FBS 
current was made while monitoring Zφ  with the anode-to-cathode phase detector.  Assuming a 
linear change in the cavity Q 
from 3000 at the MI injection 
frequency (52.8114 MHz) to 
5000 at the MI extraction 
frequency (53.104 MHz), Eq. 2 
was used to determine the cavity 
resonant frequency of  from Zφ .  
An example measurement at an 
RF drive frequency of 53.104 
MHz is shown in Fig. 10 along 
with a curve fit of the form 
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τ
t

finalo eftf 1)(  where τ  

is the time constant of the 
dynamic response.  The 
measured time constant was ~5.8 
msec; corresponding to a single 
pole, p, at ~27.4 Hz for the 
model discussed above. 

 

Cavity Response to Tuner Modulations Gxp(s): 
Cavity resonant frequency or tuning variations change the cavity differential equations into time-
varying equations.  In general the tuning variations will cause additional amplitude and phase 
modulations of the cavity voltage.  For small variations the phase modulations can be modeled as 
an additional linear transfer function Gxp(s) given by [1], 
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where 
Q
foπ

σ =  is the damping rate parameter of the cavity impedance.  This transfer function 

has the same zero and poles as the un-normalized in-phase and quadrature modulation transfer 
functions as discussed in [2] as opposed to the normalized versions discussed in [1].  Note that 
for zero detuning, 0=Zφ , the cavity response is a single pole at σ−  corresponding to the half-
bandwidth of the cavity impedance as expected.  For a Q between 3000 and 5000, the 
corresponding pole is between ~ 5kHz to 9kHz. 
 
It is now clear that, to first order, the composite cavity response to tuner modulations, 

)()( sGsG xptuner ⋅ , is effectively a second order system.  A natural choice for a feedback controller 
is a conventional lead-lag compensator design; which was what was designed into the original 
controller as will be seen below. 
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Figure 10: Example resonant frequency step response measurement.



Present Cavity Tuning Controller: Dcntrl(s) 
A detailed view of the present cavity tuning control system block diagram is shown in Fig. 11.  
The key features of this system are: 
 

• A global (common to all stations) program, I:VBPG, is used as a feed-forward term.  
Individual station adjustment is provided via an internal gain adjust knob and a manual 
adjustment (I:FBxxH via the Internet Rack Monitor (IRM)).  An offset is provided via 
I:FBxxO, which is automatically tuned via a software algorithm residing in the IRM, to 
reduce the phase detector error to zero upon RF turn on.  This offset also minimally 
affects the global program scaling. 

• The feedback filter, D(s), tunes the closed loop response of the system. 
• The feedback gain is a function of the global FBS program.  This is to compensate for the 

decrease in loop gain caused by the monotonically decreasing 
FBS

o

I
f

∂
∂  as seen in the 

)( FBSo If  measurements discussed previously. 
• The loop is activated on the global RF ‘Trig1’ signal and deactivated on ‘Trig2’. 
• The loop is also deactivated upon a station trip as detected via an Anode Inhibit. 
• When the loop is operating normally via ‘Track’ mode (controlled via the Track/Hold 

gates derived from the mid-level RF (MRF) system) the phase detector provides the 
feedback signal. 

• A ‘Hold’ mode is provided via a Track/Hold module and the ‘Track&Hold Following 
Function’.  This mode is used to hold the tune of the cavity during manipulations such as 
gating stations off for slip-stacking.  The Track/Hold module simply samples and holds 
the input value at the initiation of a ‘Hold’ mode.  The ‘Track&Hold Following Function’ 
provides a very crude and brute force feedback hold function that forces the cavity tuning 
controller output to follow the Track/Hold output value during the hold. 
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Figure 11:  Detailed block diagram of present cavity tuning control system 

 



The DC gain through the various paths to the FBS Drive output were measured to be: 
• Program output:  ~ [ ]00045.01045.045.0Pr DACDACFBS g ⋅+⋅+⋅  
• Offset output: ~ [ ]004.05.0 DACV ⋅+  
• Error output: ~ [ ]gerror FBSPr1354 ⋅+φ  

 
Dcntrl(s) Feedback Filter Response : 
The feedback filter, D(s), of Fig.11 is a lead-lag compensator op-amp circuit as shown in Fig.12. 

 
Figure 12:  Lead-Lag op-amp circuit 

The transfer function of the lead-lag circuit is: 
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where the first composite term is a gain term and the second and third terms are each either a 
lead or lag network depending upon the component values.  The values used in the present cavity 
tuning controller are: Ω= 1201R , Ω= kR 32 , Ω= 1203R , Ω= kR 1004 , FC µ033.01 = , and 

FC µ2.33 =  resulting in the lag 
network of 5.41421 ⋅≅ πz , 

5.021 ⋅≅ πp  and the lead 
network of kz 55.122 ⋅≅ π , 

kp 2.4022 ⋅≅ π  with gain 
04.1≅K .  The DC gain of this 

circuit is 33/ 24 ≅RR .  Note 
however, that the overall DC 
gain of the feedback through 
the cavity tuning controller is a 
function of the FBS program as 
described above.  A bode plot 
of the compensator with these 
parameters is shown in Fig.13. 

Figure 13: Original lead-lag compensator response 



Complete System Response 
The approximate small signal open-loop response of the complete system, 

)()()( sGsGsD xptunercntrl ⋅⋅ , at a DC gain of ~165 is shown below in Fig.14. 
 

 
Figure 14:  Approximate small signal open-loop response of the complete system,  

 
Figure 15 below shows the measured amplitude and phase response of an actual station with the 
cavity tuning control loop active (closed-loop) along with a simulation.  The measurement was 
taken at the MI-60 test station with the cavity initially detuned by ~70deg when the cavity tuning 
control loop was initially activated.  The saturation seen at the peaks of the amplitude is due to 
the power amplifier tube drawing screen current and entering saturation. 
 
The simulation was performed using Simulink1.  The Simulink model includes the full time-
varying state-space model for the cavity based upon the in-phase and quadrature transfer 
functions for a resonant cavity from Ref. [2].  The exponential fit for )( FBSo If  and the single 
pole model for Gtuner(s) was used to model the test station cavity ferrite tuners.  The simulation 
gain had to be ~3 times higher than the small signal gain shown in Fig.14 to achieve similar 
results.  This is possibly due to higher frequency poles and parasitic poles reducing the phase 
margin of the system.  Further investigations would be necessary to completely understand the 
gain difference.  Overall, the comparison places confidence in the simulation model at least to 
first order. 
 
 
  
 

                                                 
1 Simulink is software for modeling, simulating, and analyzing dynamic systems.  For more info see 
www.mathworks.com  



 
 

 
Looking back at Figs.13 and 14, it appears that the original design’s intent was to increase the 
phase margin near the cavity pole with the lead compensator and to decrease the steady state 
error with an increased DC gain due to the lag compensator as expected.  However, when 
looking at the Fig.14, it appears that increased phase margin might be obtained if the lead 
compensator’s pole and zero were shifted to a slightly lower frequency.  As a proof of principle 
that other tunings are possible, the lead compensator’s pole and zero were scaled by a factor of 
1/10 and the DC gain was increased by a factor of 7 to achieve a lower overshoot in simulations 
as shown in Fig.16. 
 
 
 
 
 
 

 

 

 

 

 

 

Figure 15: (Left) MI-60 test station measurement of cavity tuning control loop. (Right) Simulink simulation. 

Figure 16: Simulink simulation with lead compensator’s pole and zero at 1/10 the original values and DC 
gain 7 times the original.  Horizontal axis is time, vertical is magnitude is Volts, vertical phase is Degrees. 



 

Conclusion 
The original cavity tuning control system has been characterized to guide future upgrade designs.  
There are various methods available to tune the system response; including root locus methods, 
frequency response methods, and state-space methods.  Modern tools are available that offer 
computational power that can be used to help optimize future designs.  The model provided here 
has been included in a time-varying state space simulation of the cavity impedance.  It can be 
included in full system simulations to help understand the coupling between the various RF 
system control loops; something which may become necessary as more loops are added to the 
system and cross-coupling between loops occur due to machine conditions. 
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